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Abstract
A unified theory  [1] details the relation between the strong-nuclear force and 
nuclear reactions, nuclear fusion included. The asymmetry between electron and 
nucleon  sustains  the  primary  concept  of  electrical  neutrality  through  a  weak 
nuclear force mechanism.
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I. INTRODUCTION

A. Preliminary remarks

If  quantum  mechanics  can  provide  quantitative  expressions  of  forces  in 
conformity  with the work of Erhenfest and the principle of correspondence [2], 
recognized quantitative expressions for nuclear and weak forces do not currently 
exist [3]. In addition, the four basic forces do not depend on temperature, since 
measured in vacuum between particles. 

In one of his books [4], Abraham Pais recalled a comment by Rutherford during 
the  1914-1919  period: "the  Coulomb  forces  dominate  if  v  (speed  of  alpha 
particles)  is  sufficiently  small",  evidencing  by  these  words  the  velocity-
dependence  of  the  strong-nuclear  force.  However,  since  Rutherford  did  not 
apparently  refer  to  temperature,  optimal  conditions  for  nuclear  fusion  do  not 
necessarily arise in disordered configurations characterized by extremely high 
temperatures, such as those encountered in stars like the sun. Even compared 
with  galaxy formation, hot  fusion in many stars seems the slowest  and most 
inefficient physical  phenomenon in the universe, because the sun's ten billion 
year lifetime has an order of magnitude similar to the age of the universe, this 
circumstance having been highly beneficial for the life on earth.

Although  not  based  on  equations,  Rutherford’s  conclusion  constitutes  the 
essence of  the “cold”  approach to  nuclear  fusion and reactions starting  from 
moderate energy levels, instead of extreme temperatures hardly controlling with 
precision  the  physical  parameters  ruling  nuclear  phenomena.  In  this  view,  a 
better  theoretical  understanding  of  these  parameters  will  help  nuclear 
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technologies.

B. Theoretical antecedents

Eddington mentioned the concept of asymmetric affine connection in 1921 and 
pointed out applications in microphysics, but he did not pursue this idea [5]. In 
1922, Elie Cartan introduced geometric torsion, as the antisymmetric part of an 
asymmetric affine connection. In May 1929, Cartan wrote a letter to Einstein [5] 
in which he recommended the use of the differential formalism he developed, but 
Einstein did not follow Cartan's advice.

Between  1944  and  1950,  J.  Mariani  published  four  papers  dealing  with 
astrophysical  magnetism  [6] and introduced an "ansatz"  structurally similar  to 
that  used  in  the  present  theory.  The  German  word  "ansatz",  used  by  Ernst 
Schmutzer (correspondence), refers to a supposed relationship between fields of 
distinct  origin,  for  example  geometric  contrasting  with  physical.  Einstein  also 
used an ansatz when he identified gravitation with the 4-space metric, but he did 
not put it in the form of an equation, presumably because being trivial.

The organization of the paper is the following: Section II details the Lagrangian 
formulation and the calculus of variations. Section III is about field equations and 
quantitative expressions of forces. Section IV introduces the short-range force 
between charged particles, first referred to as strong-nuclear between nucleons. 
Section V is on Yukawa and complexity. Section VI details the short-range forces 
in both systems electron-proton and electron-neutron, evidencing a weak nuclear 
mechanism in LENR technologies.

When not stated otherwise, mathematical conventions are those of reference [1].

II. THE THEORY AND ITS METHOD

Following Einstein's program, the field Lagrangian of this theory [1] is essentially 
gravitational  and  electromagnetic,  with  five  fields  and  a  new  constant.  This 
Lagrangian  retrieves  Einstein's  equation  for  gravitation,  and  Maxwell's  linear 
electromagnetism  in  a  first  approximation.  The  torsion  structure  of  this 
Lagrangian is part of an extended (4-dimensional) Einstein-Hilbert Lagrangian, 
whose full affine connection includes the torsion T schematically introduced by 
the ansatz T =  FJ (without indices), where F is the electromagnetic field and J is  
the electric current density. Torsion produces three quadratic Lagrangian terms 
evidencing quadratic electromagnetic couplings subsequently describing short-
range forces, besides magnetic moments coupled with electromagnetism. 
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A second Lagrangian, in simpler reduced form for motion, produces the forces 
acting  on massive  matter,  through coordinate  variation.  These forces include 
short-range forces Interpreted as strong-nuclear and weak, besides spin forces 
[7] not calculated so far. A third quantum Lagrangian is also part of the theory but 
does not include yet the specific quadratic field couplings relative to the short-
range forces, which might lead (?) to strong-nuclear and weak forces expressed 
in terms of probability packets [2].

Due to the local  character of  physical  forces, implied by the presence of the 
current J and the non-vanishing of torsion in massive matter, the first and second 
Lagrangians only define field equations and forces inside massive matter, here 
synonymous to electrically charged particles such as electrons and quarks. This 
is so because forces act on massive matter at its precise location, not close to it 
in vacuum if one accepts that massive particles are not singularities of fields in 
vacuum. Nevertheless, this formalism is easily extended to the usual description 
of forces in vacuum, together with cosmology [1].

Somewhat summarizing the nuclear problem, a coupling of torsion to massive 
matter, via electrodynamics, evidences the quadratic structure of torsion in an 
enlarged Einstein-Maxwell  theory implying squared electromagnetism covering 
short-range forces such as nuclear and weak.

About  equations,  attempting  to  extract  all  interactions  from a  system of  field 
equations is not applicable in this theory, because one derives field equations by 
varying separately all fields representing variable entities in a field Lagrangian.  
From a second Lagrangian for motion, one obtains a unique equation of motion,  
containing all interactions, by varying the 4-coordinates of one massive (charged) 
particle. There is therefore no reason to confuse both processes, apart from their 
common field Lagrangian. Moreover, the same Lagrangian field couplings were 
introduced in a third quantum Lagrangian that includes Schrödinger's field, which 
produces a wave equation retrieving Schrödinger's equation in a non-relativistic 
weak  field  approximation.  This  operation  leads  to  energy  definition  through 
Hamiltonian  wave-solutions  of  Schrödinger's  time-dependent  equation  (of 
evolution) [1].

In conclusion, these three Lagrangians describe the fields inside matter and the 
forces  acting  on  this  massive  matter,  all  massive  particles  being  electrically 
charged. Moreover, these forces are naturally extended in vacuum. In relation 
with this, physics appears quite far from a unique theoretical model, besides the 
Standard Model and a long list covering classical mechanics, thermodynamics, 
large number of quantum approaches, etc...

III. THE EQUATIONS
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In  general  relativity,  the  trajectories  of  matter  are  geodesics.  This  is  the 
consequence of the variational postulate δS = 0, whose action S is defined by the 
line-integral implying the gravitational force  [8]  in a curved 4-space in general 
relativity:

S = ∫- mcds = ∫pkdxk,          (1a)

where pk is the 4-momentum defined by

pk ≡ mcdxk/ds ;  (ds2 ≡ - dxkdxk).          (1b)

For other interactions, gravity is switched off  [5] and the formalism of special 
relativity is used. Such interactions are derivable from the action [8]

S = ∫(pk + eNk)dxk,          (2)

where e is the electric charge and Nk is the enlarged vector potential constructed 
from the Lagrangian densities containing the electric current density. An ensuing 
equation of motion, encompassing all interactions besides gravity, is derived from 
(2) by the sole variation of coordinates. One verifies

δ(ds2) = 2ds(δds) = - 2dxkδdxk.          (3)

Eq. (3) implies

(δpk)dxk ≡ 0,          (4)

obtained by replacing pk with its expression (1b). For the variation of (2), one 
uses δdxk = dδxk and δNk = ∂iNkδxi, integrating by parts according to the known 
procedure [8] and finds

δS = │(pk + eNk)δxk │ -  ∫ [dpk - e(∂kNi - ∂iNk)dxi]δxk          (5)

(from points A fo B).

In accordance with usual limit conditions, the null-variation of S (δS = 0) implies 
the equation of motion

Fk ≡ dpk/dt = e(∂k Nn - ∂nNk)dxn/dt,          (6)

where Fk is the generalization of the Newtonian force in special relativity. Since dt 
is not an invariant, Fk is not a vector.
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Since (2)  avoids the summation symbol  for  various particles,  the equation of 
motion  (6)  is  restricted  to  a  system  formed  by  different  fields  and  only  one 
particle, at the approximation that one moving body does not affect the fields. 
The aim is to delimit the general problem of interactions in the simplest case, 
being aware that this technique is apparently limited to a 2-body problem. This 
method is now applied to the field Lagrangian £ [1] defined by

£/√g ≡ (1/2K)[R + Ta,bc(Ta,bc + ΦJ(aFbc))] + AiJi 
        
           - (1/4μo)FikFik + αΦJiJi,          (7)

where  gab is the symmetric metric tensor with g ≡ - det(gab). Ta,bc is the torsion 
tensor and parentheses around three indices mean their cyclic permutation. Jk is 
the electric current density, Ak is the 4-vector potential, Fik is the electromagnetic 
tensor. R is Riemann's scalar, K is Einstein's constant of gravitation and μo is the 
magnetic permeability of vacuum. Φ is a scalar field and α is a (new) constant.  
Furthermore,  agreeing  with  Poincaré's  definition  of  science  as  a  system  of 
relations [9],  only the relation between torsion and physical fields is meaningful 
regarding the relation between geometry and physics.

In line with the next equations (16) to (18), the line-integral (2) for motion will  
arise as a 4-volume integration of the Lagrangian terms, which in (7) include the 
electric  current  density  Ji  containing  the  4-velocity  c(dxi/ds)  for  coordinate 
variation. For motion, one therefore discards the terms not containing J i.

In special relativity (gravitation switched off [5]), this procedure thus leads to the 
second reduced Lagrangian scalar L for motion, given by

L ≡ (1/2K)Ta,bcΦJ(aFbc) + AiJi + αΦJiJi,          (8)

where

Ta,bc = - (Φ/2)J(aFbc)           (9)

is the equation-definition for torsion [1]. One details

Jk ≡ ρouk = ρoc(dxk/ds) = = ρ(dxk/dt)          (10)

(uk is the 4-velocity),  where ρo  is the rest electric charge density and ρ is this 
charge density in the referential of the observer, so that (10) implies

ρ = ρo / (1 - v2/c2)1/2.          (11)

Using (9), one puts (8) in the form
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L = NiJi + αΦJiJi,          (12)

with

Na ≡ Aa - (3Φ2 / 4K)J(aFik)Fik,          (13)

due to the substitution of torsion by the right member of (9) and the identity

J(aFbc).J(aFbc)
 = 3JaFbc J(aFbc).          (14)

One first shows that the second "nuclear" term including JiJi  in the right member 
of (12) produces the line-integral (1a) after 4-volume integration, according to the 
mass condition [1]

m = αΦρoe,          (15)

where the  Φ-field plays a key-role in next equations (16) to (18). Φ originally 
came from solutions of Einstein's equation for gravitation in a static, spherically 
symmetric  space-time inside matter  [1].  Such solutions would not  exist  if  αΦ 
were  a constant.  The Φ-field  was therefore introduced as a variable physical 
quantity.

Using (15) and the notation uk ≡ Jk/ρo for relativist 4-velocity, one writes

∫dt(αΦJkJk)d3x = ∫dt(αΦρoukρ)(dxk/dt)d3x = ∫(m/e)ukρdxkd3x

= (1/e)∫pkρd3xdxk = ∫pkdxk           (16)

(Φρo is constant). One follows the same procedure with NiJi in (12):

∫dt(NkJk)d3x = ∫dt(Nkρdxk/dt)d3x = ∫eNkdxk,          (17)

and gets

S ≡ ∫(L.d3x)dt = ∫(pk + eNk)dxk.          (18)

Field equations and equations of motion are distinct objects. From the first field 
Lagrangian £, one gets field equations by varying the fields. From the second 
matter Lagrangian L, simplified for motion, one derives an equation of motion by 
varying the coordinates representing the location of matter. 
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In this theory of motion, massive charged particles are not point-like. However, 
the framework of motion relative to such particles has no interest in a variable 
charge density inside matter. One  therefore interprets ρo as the average value of 
rest charge density.

IV.  THE  SHORT-RANGE  FORCE  AT  THE  ELECTRO-NUCLEAR 
APPROXIMATION

To evidence short-range forces, one discards the Lorentz force engendered by 
Aa in the right member of (13),  whose second term will  produce an attractive 
force in 1/r5, of intensity proportional to the square of non-relativistic momentum 
multiplied by the particle volume at rest (see further). This short-range force is 
distance-dependent  [10,  11], in  opposition  to  spin  forces  of  greater  local 
character.

One  now  calculates  the  components  fa of  this  short-range  force  in  the 
approximation of electromagnetism reduced to its electric components, due to 
the non-relativistic neglect of the magnetic field [2]. Accordingly, this short-range 
force of electro-nuclear character reads

fa ≡ dpa/dt = e(∂aQb - ∂bQa)dxb/dt,          (19)

with

Qa = - (3Φ2 / 4K)J(aFik)Fik,          (20)

from (13), thus without  Aa implying the Lorentz force. Using (15), Eq. (20) then 
becomes

Qa = - (3m2 / 4Kα2e2ρo
2)J(aFik)Fik.          (21)

Due to the existence of quarks, the simplest interaction between nucleons is a 6-
body problem. However, one will treat the system nucleon-nucleon as a 2-body 
problem in a first approximation.

Rectangular  coordinates  characterize  the  referential  Oxy  where  a  first  static 
proton is located at the origin O. A second proton moves above the x-axis, its 
velocity v being parallel to the y-axis. Using xo = ct in the approximation of point-
like  protons,  the components  Ex and Ey of  the  electric  field  produced by the 
proton at rest are

Ex = cFxo = ex/r3 ;  Ey = cFyo = ey/r3           (22)
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(r2 ≡ x2 + y2 ;  vy ≡ v), at the approximation of Maxwell's electric field in vacuum.

The electric current density reads

Jy = ρovy / Γ ; Jx = 0,          (23)

where Γ ≡ (1 - v2/c2)1/2.          (24)

One calculates

J(xFik)Fik = 2JyFxoFyo ; J(yFik)Fik = - 2Jy(Fxo)2,          (25)

and finds

Qx = (-3m2v / 2Kα2ρoΓc2)(xy / r6),          (26a)

Qy = (3m2v / 2Kα2ρoΓc2)(x2 / r6),          (26b)

Qo = 0.          (27).

The components of fa then read

fx = e(∂xQy - ∂yQx)v,          (28a)

fy = 0.          (28b)

Writing x/r = sinδ, where δ is here the angle between the straight line defined by 
the two proton centers and the velocity of the moving proton, Eq, (28a) gives

fx = (-9m2v2Vsinδ / 2Kα2c2Γ)r-5           (29)

(fy = 0) where V ≡ e/ρo is the proton volume, defined before in the approximation 
of a constant rest electric charge density ρo.

In the more general case of two particles with respective charges e1 and e2, the 
particle 1 being at rest, (29) goes over into

fx = -[9(m2)2(v2)2V2sinδ / 2Kα2c2Γ ](e1/e2)2r-5,          (30)

where m2, v2, V2, e2 are the respective mass, velocity, volume at rest (V2 ≡ e2/ρo), 
and electric charge of the moving particle, e1 being  the charge of the particle at 
rest, r being the distance between them. Eqs. (28) and (30) determine the short-
range force exerted by particle 1 on particle 2,  which is perpendicular to the 
velocity of particle 2. The eventual quark structure also implies that (e1)2 and (e2)2 
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are sums of squared quark charges in the case of nucleons. Accordingly the 
expression "summed charge squared", worth 1 for a proton and 2/3 for a neutron, 
figures in ref [12]. Moreover, Eq. (30) applies to all massive particles, here built 
on electricity (Mie's idea, see below).

These  sums  of  squared  quark  charges  also  relate  to  the  equation  e  =  Cr,  
unnumbered  formula  between  Eqs.  (45)  and  (46)  in  ref.  [1] where  e  is  the 
charge, C is a constant and r is the radius of a fundamental charged particle such 
as  a  quark,  which  presents  another  relation  with  the  words  "neutron  mean 
squared intrinsic charge radius" in ref.  [13]. The 1/ r5 dependence of the strong 
interaction came out  in 1926 after unsuccessful attempts with 1/ r2 and 1/ r4 [4, 
7], reference in which A. Pais recalls the discovery of a non-central component of 
the nuclear force, discovered by Schwinger and Bethe in 1939  [4].  This non-
central  character  was  confirmed  in  the  forties  [4].  Attractive  forces  are  not 
necessarily central and the range of the strong-nuclear force is infinite, however 
its intensity rapidly decreases with distance, reason why this force is referred to 
as short-range.

There is more on the subject of fundamentals, briefly recalled now. As dynamics 
is  an  essential  feature  of  physical  theories  [2],  Mariani's  ansatz  toward  field 
unification centered on the motion of massive matter, but the problem of motion 
has little to do with a field theory in vacuum,where particles are singularities of 
the fields (see above).  One thus sees that  the problem of  motion essentially 
resides inside massive matter, which implies interior solutions of field equations 
in matter  [1]. In 1912, Gustav Mie introduced this idea of matter constituted by 
fields.  Hermann  Weyl  detailed  Mie's  theory  in  his  book  Space-Time-Matter  
(Dover, NY 1952, p. 206), in which Weyl reproduced Mie's words when writing: 
matter is "purely" electrical in nature. Einstein and Leopold Infeld retook this idea 
of matter constituted by fields in The Evolution of Physics (Simon & Schuster, NY 
1938, p. 242).

The present theory in matter reproduces field theories in torsion-free situations,  
Equations of motion for gravitation and electromagnetism (Lorentz's force) are 
also retrieved.  Furthermore, one retrieves quantum mechanics for the hydrogen 
atom from identical field couplings, including Dirac's magnetic dipole and spin-
orbit energies, by introducing additional constants such as the electron charge 
and  mass,  besides  Planck's  constant  [1].  On  the  other  hand,  the  quantum 
treatment of strong-weak couplings has been done regarding magnetic moments 
[1], but the procedure has to be applied to short-range forces, strong-nuclear and 
weak, because quantum theory is over-imposed on the classical structure.

V. YUKAWA AND COMPLEXITY 
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Since  perpendicular  to  velocity  according  to  Eqs.  (28),  the  short-range  force 
defined by Eq. (30) does not produce energy (see below). Moreover, this force is 
firmly non-central, which contrasts with central forces oriented along straight lines 
connecting two particle centers [11]. A complex and chaotic kinematics, together 
with a rather unexpected dynamics characterize therefore strong-nuclear forces 
manifesting  a  tendency  toward  unpredictability  and  instability  [4],  besides 
radioactivity opposing nuclear stability.

Apart from this stability issue, nuclear forces are velocity-dependent and complex 
[4], so that Lev Landau's suggested to limit the study of the strong-nuclear force 
to binary nuclear interactions ("two by two"  [7]). This was probably due to the 
Yukawa distance and the short-range character of strong-nuclear forces, to what 
A. Pais added "the nuclear 2-body problem is just too complicated" [4]. However, 
Pais'  words  mean  that  the  complexity  resides  in  the  nuclear  problem,  not 
necessarily in theories describing nuclear phenomena. 

About this issue of complexity,  the present theory may also look complicated, 
example of its non-linear version of Maxwell's theory, whose approximation for 
the electric field in Eqs. (22) may be responsible for the vanishing work (energy) 
produced  by  the  strong-nuclear  force,  according  to  Eqs.  (28).  From  another 
standpoint,  perpendicularity  does  not  materialize  exactly  in  the  real  world 
because 3-dimensional orthogonality is not an invariant in 4-dimensional relativity 
theory. In contrast, the attractive character of forces is an invariant according to a 
definite arrow of time.

Within a non-relativistic approximation (Γ= 1), one makes (e1)2 = (e2)2 and takes 
the  absolute  value  of  the  strong-nuclear  force  between  two  protons  or  two 
neutrons from Eq. (30), equaling its right member to mv2/(R/2) for motion around 
the center of mass and assuming a circular motion. The factor v2 then simplifies 
in both members, which gives

R4 ≈ 9mV / 4Kα2c2,          (31)

(sinδ = 1).

The binding of two protons,  or  two neutrons, consequently implies their  fixed 
separation defining the Yukawa distance R figuring in Eq. (31) for a common 
particle volume (see further). R is currently valued at 1.4 fermis and allows the 
calculation  of  the  constant  α  according  to  a  nucleon  radius  of  0.7  fermis 
(approximation).

VI. THE WEAK NUCLEAR FORCE IN THE SYSTEM ELECTRON-NUCLEON
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A. Electrons and nucleons

In ref. [7], Landau wrote: "...quantum mechanics occupies a very original position 
in the range of physical theories; it contains classical mechanics as a limiting 
case  and  at  the  same  time  needs  this  limit  to  be  founded"  (translation).  In 
agreement  with  Bohr's  correspondence,  one  then  sees  the  importance  of  a 
classical theory of motion and forces, before a quantum treatment evidencing 
probability packets [2], which would bring new elements, besides reassuring the 
calculation of the important tunnel effect within an appropriate framework.

In this classical approach, the strong-nuclear force does not produce energy to 
realize nuclear fusion in a first approximation, This situation looks deceiving but 
leads to an apparently positive conclusion. Nuclear fusion, based on the unique 
role of the strong-nuclear force, still does not present a high degree of probability  
after many years of hot fusion experiments. Other phenomena might therefore 
play a significant role, if theoretically validated. In addition, LENR experiments 
already produce excess heat, which establishes the experimental foundation for 
future developments, starting from simple configurations, to improve in a second 
stage.

Before neutron formation with emission of a neutrino, the electron capture by a 
proton  is  a  bound  system  electron-proton  constituting  a  two-body  system 
respecting  Newton's  principle  of  equality  between  action  and  reaction,  in  an 
energy  conservative  bound  system  not  interfering  with  energy-momentum 
conservation of fields around it. The phenomenon of orbital electron capture from 
atomic levels  K, L, M exists in neutron stars [14], its classical description implies 
the  presence  of  two  short-range  forces,  detailed  now  without  writing  the 
electrostatic force between proton and electron, because this force cancels out in 
both members of next  Eq. (33) expressing equality of  action and reaction for 
motion around the center of mass.
 
Quark charges in a proton are 2/3, 2/3, -1/3, whose sum of squared charges = 1  
is the same as the squared charge of the electron, which implies (e1)2 = (e2)2  in 
Eq.(30).  Within a non-relativistic approximation (Γ =1), one writes an equation 
whose left member is the intensity of the short-range force exerted by a proton 
on  an  electron,  the  right  member  expressing  the  converse.  Simplifying  both 
members by

9 / 2Kα2c2r5,          (32)

yields

(me)2(ve)2Ve = (mp)2(vp)2Vp,          (33)
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with sinδ = 1 for both forces in opposition, in relation with round orbits of particle 
centers (analogy with  Bohr's 1913 model).  The square root  of  both members 
produces

meve = mpvp(Vp / Ve)1/2.          (34)

In Eq. (30), the attractive short-range force is proportional to the squared non-
relativistic momentum of a particle, now retrieved in the left member of Eq. (33), 
whose square root gives meve in the left member of Eq. (34). The time-derivative 
of both members then leads to 

[m(dv/dt)]e  =  [m(dv/dt)]p(Vp / Ve)1/2.          (35)   

whose left  member is  the force  dp/dt  figuring in Eq.  (19),  acting now on the 
electron.  For  consistency,  therefore  not  only  in  relation  with  Newton's  third 
principle, one writes 

[m(dv/dt)]e  =  [m(dv/dt)]p,          (36)

so that Eq. (35) reduces to

Vp = Ve,         (37)

the electron and the proton have therefore the same volume in this theory.

One repeats the same procedure, by adapting Eq. (33) to the bound system 
electron-neutron, taking into account the sum of squared quark charges worth 
2/3 for the neutron, which gives

(me)2(ve)2Ve(2/3) = (mn)2(vn)2Vn(3/2).         (38)

In relation with Eq. (36), one writes

meve = mnvn,          (39)

for equality of absolute values of momenta, so that Eq. (38) reduces to

Vn = (4/9)Ve.        (40)

implying Vn = (4/9)Vp in relation with Eq. (37). This result would be unphysical if 
the proton and neutron volumes need to be equal for defining a unique Yukawa 
length in Eq. (31). However, the imperfect equivalence between (p-p) and (n-n) 
interactions is an established fact (“very similar” in ref. [7]). In this view, the 18 % 
difference  for  R in  Eq.  (31)  might  be  physical,  and not  important  enough to 
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discard this type of capture, in spite of its apparent lack of observational data. All 
this seems good news for the possibility of electron capture by a neutron, part of 
the Widom-Larsen theory [15] which brings forth a neutral deuteron in conformity 
with Eq. (38).

The spherical symmetry, fundamental in Bohr's model of the hydrogen atom and 
Schrödingers's equation in atomic theory, besides the statistical interpretation of 
the  wave-function,  seems  typical  in  relation  with  a  classically  defined  “weak 
nuclear” force mechanism in Eq. (33), referring to two distinct forces of equal 
intensity in the system electron-proton. The weak force acts on the electron with 
the same intensity as if the source were another electron, instead of a proton, 
and  the second strong-nuclear force acts on the proton with the same intensity 
as if the source were another proton, instead of an electron. Short-range forces 
work this way because proportional to the squared mass of the particle acted 
upon, multiplied by the factor (e1/e2)2 previously defined in relation with quarks.

Here, the bound system electron-proton represents the electron capture through 
two  forces,  strong-nuclear  and  weak,  system  literally  characterizing  a  “weak 
nuclear” mechanism of forces, according to which proton and electron react. In 
relation with this, ref. [14] indicates that “β-decay applies to all nuclear reactions 
implying neutrinos or anti-neutrinos” summarized by

p + e- ↔ n + νe,          (41)

adding that “all these reactions are ruled by the weak nuclear force”, represented 
here  by  two  forces,  strong-nuclear  and  weak  of  equal  intensity,  which  are 
Newton's inevitable action and reaction. The left member of (41) presents the 
electron capture  explaining the neutralization of the Coulomb barrier (including 
eventual shielding during definite time intervals before neutron formation ?). This 
electron capture  produces a neutron, subsequently fusing with a nucleus since 
being essentially acted upon by the strong-nuclear force between nucleons.

Finally,  the  bound  system electron-proton  with  two  distinct  forces,  weak  and 
strong-nuclear  of  equal  intensities,  contrasts  with  the  scenario  of  two  strong-
nuclear forces representing action and reaction in the usual outline of nuclear 
fusion  between  protons,  as  in  the  sun where  the  presence  of  electrons  in 
momentary  bound systems electron-proton could  play a  role  in  the  fusion  of 
hydrogen  [16], but this is another story.  Obviously,  the differentiation between 
short-range forces in the weak nuclear scenario of electron capture by a proton 
[14] supports the low energy approach to nuclear fusion.

B. Numbers
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From Eq. (30), the coupling constant of the weak force between two electrons is 
(me)2, which constitutes a first number. According to the approximation mn ≈ mp, 
the strong nuclear force between two nucleons is characterized by the coupling 
constant (mp)2.  Based on mp = 1836 me,  the coupling constant of  the strong-
nuclear force between nucleons is 3.37 x 106 times greater than the coupling 
constant of the weak force between electrons, this the second number.

In the bound system electron-nucleon, the weak nuclear mechanism includes the 
two coupling constants (mp)2  and (me)2 because two distinct forces are present. 
Since the weak force acts on the electron and the strong-nuclear force acts on 
the nucleon, the mean value of these two coupling constants would be half the 
second number above, so roughly 1.69 x 106 because (me)2 is negligible in regard 
to (mp)2. However, this third number is unrelated to relative intensities of these 
two forces in a bound system, where the equality between action and reaction 
implies the equality of both force intensities. In relation with  Eq. (30), the non-
central short-range force is velocity-dependent, so that relative force intensities 
are relative values of squared non-relativistic momenta, in opposition to relative 
values of coupling constants.
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